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Abstract :  We examine the role played by the finite width of the layers in determining the critical density for the onset of Wigner 

crystallization in a symmetric electron-hole bilayer system. Such a phase transition can appear, for instance, in the liquid-state static 

density susceptibility in the form of a divergence at a wave vector representing the period of density prevailing in the crystal phase. 

In this perspective, we have theoretically calculated the static density susceptibility over a wide range of the carrier density  
sr  and 

the interlayer spacing d, by incorporating the effect of finite width of the two layers. The correlations among carriers (both the intra- 

and interlayre) are treated beyond the static mean-field theories by using the dynamical self-consistent mean-field approximation 

of Hasegawa and Shimizu. Our study reveals, parallel to the one where finite width effects are ignored, that the electron-hole liquid 

may become unstable with respect to the Wigner crystal phase above a critical 
sr  value (say 

c

sr ) for d lower than a critical spacing, 

while the charge-density-wave state might be the stable phase for ,c c

s s sr r r  turns out to be lower as compared to the corresponding 

value for an isolated layer, and thus implying that the electron-hole correlations act to stabilize the Wigner crystal phase over the 

homogeneous liquid phase. On comparison of our results with similar studies without finite width effects, we find that the inclusion 

of these effects have tendency to augment the critical 
sr  for Winger crystallization. 

 

IndexTerms - Crystallization, electron-hole-bilayer system, phase transition. 

I. INTRODUCTION 

 

During the last decade, the systems composed of two or more layers of electrons have attracted a great deal of interest 

both at the theoretical and experimental fronts. Such electron systems can be fabricated with a very good precision, for 

instance, at the interface of a semiconductor heterostructure, and this unit can be repeated periodically in the transverse 

direction to have a system of two or more layers. Many interesting and unusual phenomenon have been discovered in 

these systems due entirely to the presence of additional layers of carriers. Prominent among these are the observations of 

the new quantum hall states and the insulating Wigner crystal (WC) phase in the electron bilayer system. The existence 

of the WC state has also been predicted by the recent theoretical[1,2] and computer simulation[3] studies. Very recently[2,4], 

the coupled electron-hole (e-h) bilayer system, where electrons are substituted by holes in one of the layers, has got 

considerable attention mainly due to this system being more strongly correlated than its electron counterpart at the same 

number density of carriers. Here, in addition to the formation of the WC state, the possibility of the excitonic paring[4] is 
also predicted at sufficiently small spacing. 

However, in all of the theoretical as well as simulation studies made so far, each layer in the bilayer system is assumed 

to have practically zero width, whereas the situation is quite different in real physical conditions; in particular, the 

experimentally grown electron (or hole) layers have finite width due to finite amount of extension in the carrier wave 

function along the transverse direction. The consideration of the finite width of the layer should modify the strength of 

interaction among carriers, and consequently, the overall behaviour of the system. To investigate the ground state of the 

coupled e-h bilayer by including the finite width of the two layers makes the main objective of the present work. In 

particular, we wish to examine its effect on the existence of the liquid-Wigner-crystal phase transition. In Sec.2, we 

outline the theoretical procedure used. Results and discussion are given in Sec.3, followed by conclusion in Sec. 4. 

 

II. THEORETICAL FORMALISM  

As in the previous theoretical studies[1,3], we proceed by calculating the liquid-state density susceptibility of the 

system. The phase transition into a density-modulated phase, if any, may appear in the form of a divergence in the 

susceptibility at a wave vector representing the period of density modulation existing in the crystal phase. Within the 

generalized mean-field approximation, the dynamic density response function for the double layer system can be 
compactly expressed in the form of a 2 × 2 matrix, with the elements of the inverse of the response matrix given by 

   
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where  0 ,i q   is the density response function of non-interacting i, Vij(q) is the Coulomb interaction potential, and 

( , )ijG q   is the dynamic local-field correction (LFC) accounting for the correlation effects among the carriers in the layers 

i and j.  

 ( ) ( )ij ij ijV q V q F q , where 
ij l    for i = j and l  otherwise,    22 /V q e q   (

 
being the dielectric constant 

of the background material) and  ijF q is the form factor given by 

  '
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with ( )i z  being the solution of the Schrodinger equation 
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for the motion along z-direction. 
*

im is the effective mass of carriers in the ith layer. V(z) is the net potential 

experienced by carriers in the z-direction. It contains, in addition to the Hartree term, the effect of exchange-correlations 

and this makes the calculation of ( )i z an extremely complex problem. We use here the model of Fang and Howard[5], 

where the in-layer form factor is given by 
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Here,   1/3
* 233 2 / 2ib m e n   with a being the in-layer density of carriers. For the inter-layer interaction, the effect 

of layer-width is expected to be small and therefore, we ignore it and take ( ) exp( )ijF q qd  , with d being the centre - to 

- center layer spacing. Evidently, setting ( ) 1ijF q  , corresponds to ignoring the width of the layer. 

In the dynamical mean-field approximation[6] of Hasegawa and Shimizu, ( , )ijG q  is given as 
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Here,  0 , ';i q q   is the in-homogeneous density response function of non-interacting electrons and ( )ijS q  is the 

static structure factor. The fluctuation-dissipation theorem, which relates ( )ijS q  with the imaginary part of the linear 

response function as  

   
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closes the set of equations for the response function. Evidently, the response function calculation has to be carried out 

numerically in a self-consistent way. 

The static density susceptibility can be obtained by diagonalizing the density response matrix (1) as 
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with 
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The + and - signs correspond, respectively, to the in-phase and out-of-phase (π) modes of the density modulations in 
the two layers. 

 

III. RESULTS AND DISCUSSION  

We now look for the poles of Eq. (7). However, this can only be achieved numerically since the LFC's in our approach 

(Eq. (5)) can only be determined numerically from the self-consistent solution of Eqs. (1), (5) and (6). But, it is evident 

from Eq. (7) that it is  ,0q  that can have divergence in the e-h layer system. It is appropriate to point out here that in 

all our numerical calculations we have taken the effective mass of holes to be equal to that of elections. 

We infer from our numerical calculations that  ,0q   exhibits quite generally a peak-like behaviour in the region 

of sufficiently close approach of two layers. The overall character of this behaviour is seen to depend upon the carrier 

density 
sr  and the interlayer spacing d.  

1/2*

01/sr a n is the usual (in-layer) density parameter with *

0a  the effective 

Bohr atomic radius. For smaller 
sr  values,  ,0q   contains a single peak at / 0.5Fq q  ; 

Fq  is the Fermi wave vector. 
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However, with increase in 
sr  there starts developing a second peak in  ,0q  in the region / 2Fq q   (Fig. 1(a)) with its 

strength growing monotonically with increasing 
sr . Results of   ,0q   are given in Fig. 1(a-c) at some selected values 

of 
sr  and d. It can be noticed that the peak-height becomes stronger with decreasing d. But, we encounter at each 

sr  a 

critical spacing 
cd  below which is becomes almost impossible to obtain a self-consitent solution of Eqs. (1), (5) and (6) 

and, hence the  ,0q   ; for instance *

0/ 4.6cd a   at 10sr  . Although we are not able to calculate  ,0q   for 
cd d , 

 ,0q  appears to diverge in this d-region. Our results show that the small-q peak dominates for 16sr   and the large-

q peak dominates thereafter. The small-q peak indicates instability of the liquid towards a charge-density-wave (CDW) 

ground state, while the large-q peak, whose position lies close to the reciprocal lattice vector of a triangular lattice, could 

indicate instability against a coupled WC ground state. 

At this point, it is interesting to know the behaviour of other properties of the system near the instability region. In 

view of this, we have plotted, for instance in Fig. (2) the intra- and interlayer pair-correlation functions at 20sr  and 

*

0/ 25d a   and 19. These functions exhibit pronounced in-phase oscillations near the instability region, which are typical 

of an ordered phase. This behaviour of correlation functions supports further our claim of interpreting the (seemingly) 

diverging behaviour of  ,0q   at / 2.4Fq q   as a signature of the liquid-Winger crystal phase transition. 

To calculate the role of the finite width of the layers, we now compare our results with the corresponding studies 

where these effects are ignored. 

 

 

Fig. 1 (a-c)  ,0q   vs. / Fq q   at different 
sr  and *

0/d a  ; the legends indicate the values of  *

0/d a . 

 
Fig. 2 : Pair-correlation function  g r vs. 

Frq  at 20sr   for *

0/ 25d a   (solid curves) and 19 (dashed curves); thin and 

thick curves represent, respectively, 
11( )g r  and 

12( )g r . 
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Fig. 3 : Points of instability *

0/cd a  vs. 
sr , with (quasi 2D) and without (strictly 2D) finite width. The arrow indicate the 

crossover point. 

 

 

The comparison is compactly summarized in Fig. (3) where we have displayed the points of instability, as a function 

of 
sr , with and without the finite width of the layers. It can be noticed that the inclusion of the finite width results in an 

increase in critical 
sr  i.e., a decrease in carrier density, for the liquid-Wigner crystal transition. Apart from this shift in 

the critical density, the e-h bilayer exhibits, at the qualitative level, a behaviour similar to that without considering the 

finite width. For instance, we have comapred in Fig. (4) the behaviour of pair-correlation function at 10sr   and 

*

0/ 10d a  , with and without the finite width. 

 
Fig. 4 : Pair-correlation function ( )g r  vs. 

Frq  at 10sr   for *

0/ 10d a  ; solid and dashed curves are with and without 

finite width, respectively. 
 

IV. CONCLUSIONS 

In conclusion, we find that the inclusion of the finite width of layers in the e-h bilayer shifts the critical density for 

Wigner crystallization towards higher 
sr  by a noticeable factor of about 1.6. Thus, our study demonstates in a clear way 

the importance of finite width effects and in particular. It underlines that these effects should be considered before we 
compare any theoretical or the simulation predictions with the experimental observations. 
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